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FOREWORD

This report presents results of the expansion and improvement of the
FORMA system for response and load analysis. The .acronym FORMA stands
for FORTRAN Matrix Analysis. The study, performed from 16 May 1975
through 17 May 1976 was conducted by the Analytical Mechanics Department,
Martin Marietta Corporation, Denver Division, under the contract NAS8-
31376. The program was administered by the National Aeronautics and
Space Administration, George C. Marshall Space Flight Center, Huntsville,
Alabama under the direction of Dr. John R. Admire, Structural Dynamics
Division, Systems Dynamics Laboratory.

This report is published in seven volumes:

Volume I - Programming Manual,

Volume IIA - Listings, Dense FORMA Subroutines,

Volume IIB - Listings, Sparse FORMA Subroutines,

Volume IIC - Listings, Finite Element FORMA Subroutines,
Volume IIIA - Explanations, Dense FORMA Subroutines,

Volume IIIB - Explanations, Sparse FORMA Subroutines, and
Volume IIIC - Explanations, Finite Element FORMA Subroutines.
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ABSTRACT

This report presents techniques for the solution of structural
dynamic systems on an electronic digital computer using FORMA (FORTRAN
Matrix Analysis).

FORMA is a library of subroutines coded in FORTIRAN IV for the effi-
cient solution of structural dynamics problems. These subroutines are
in the form of building blocks that can be put together to solve a large
variety of structural dynamics problems. The obvious advantage of the
building block approach is that programming and checkout time are limi-
ted to that required for putting the blocks together in the proper order.

The FORMA method has advantageous features such as:

1. subroutines in the library have been used extensively for many
years and as a result are well checked out and debugged;

2. method will work on any computer with a FORTRAN IV compiler;
3. 1incorporation of new subroutines is no problem;

4. Dbasic FORTRAN statements may be used to give extreme flexi-
bility in writing a program.

Two programming techniques are used in FORMA: dense and sparse.
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LIST OF SYMBOLS

matrix

column matrix

} vector

transpose (when symbol is a superscript)

row matrix

m designates the row size of matrix

n designates the column size of matrix

a designates an element of matrix [A]

i designates the ith row of matrix [A]

j designates the jth colum of matrix [A]



I. INTRODUCTION

This volume presents an explanation of the function of each finite
element subroutine in the FORMA library. Example problems are given in
some cases to clarify the operations performed by a subroutine.



II-1

II. SUBROUTINE EXPLANATIONS

The subroutines are given in alphabetical order with numbers
coming before letters.



AXTAL

Subroutine AXIAL calculates (on option) finite element: (1) mass
matrices; (2) stiffness matrices (same as global load transformation
matrices); (3) local load transformation matrices; (4) stress
transformation matrices; and (5) vectors to locate the DOF (de-
grees of freedom) of the above matrices in the global DOF; for

axial rod elements. The above matrices and vectors are written

on disk units and constitute the output from this subroutine.

All matrices are in dense programming logic.

Each mass and stiffness matrix, size 6x6, is in the global co-
orinate directions. The global coordinate order for each element
is (U,V,W) joint 1, then joint 2 where U, V, W are translations.
If the Euler angles are zero at a joint, then U = 6x, V= GY,
W=46.

A
Each global load transformation matrix, size 6x6, relates loads
at the cod ends in the global coordinate directions to deflections
in the global coordinate directions. The row order in this
matrix is (PU, Pv, PW) joint 1, then joint 2 where P is force.

Eacli local load transformatign matrix, size 2x6, relates loads at
the rod ends in the local coordinate system to deflections in the
global coordinate directions. The row order:in this matrix is
P ., P _ where P is axial force.
x1’ "x2 X
Each stress stransformation matrix, : .ze 2x6, relates stresses at
the rod ends in the local coordinate system to deflections in
the global coordinate directions. The row order in this matrix
is 0 ., 0, where ¢ is normal stress.

x1 x2
Each location vector (IVEC) locates the DOF of each finite element
in the global DOF. For example, IVEC(6)=834 places element DOF 6
into globa. DOF 834. 1IVEC(3)=0 omits element DOF 3 from global
DOF. This coastrains element DOF 3 to zero motion.

The above matrices are calculated by using joint data and element
data. The Joint data is obtained from three matrices input to
this subroutine which are (1) joint global X, Y, Z locations;
(2)joint global DOF numbers; and (3) joint Euler angles.

The element data read in this subroutine is (1) options for mass,
stiffness, local load transformations, stress transformations;
(2) element material properties; and (3) element joint numbers,
cross-sectional area.

Each mass matrix is calculated by tcansfer to subroutine MAS1A.
Each stiffness matrix, loads, and stress transformation matrix
is calculated by transfer to subroutine STFlA.



‘1A1

Subroutine B1Al calculstes a buckling (sometimes referved to as
geometrical stiffness, initial astress, or stabillity) matrix for
an axial rod element with unrestrained boundaries. The buckling
matrix is based on a unit axial load. The buckling matrix is in
the local coordinate system of the rod.

DESCRIPTION OF TECHNIQUE

From Theory of tlatrixz Structural Analysis by J. S. Przemieniecki,
McGraw-Hill 1968, we obtained the buckling matrix. The strain
energy for buckling is obtained as

u=%[5152]{ 1 '1] %
1] s,

where the kernel matrix is the buckling matrix. A unit axial load
of F = 1 is assumed here. L is the rod length.

The degrees of freedom are shown in the following sketch.

0————2&3&2—2—”—‘.
6, 121
State 1 :

N

[1]



B1A2

Subroutine BlA2 calculates & buckling (sometimes referred to as
geometrical stiffress, initial stress, or stability) matrix for
a beam element with unrestrainad boundaries. The buckling matrix
is based on a unit axial load. The buckling matrix is in the
local coordinate system of the beam.

DESCRIPTION OF TECHNIQUE

From Theory of Matriz Structural Anaiysis by J. S. Przemieniecki,
McGraw-Hill 1968, we obtained the buckling matrix. The strain
energy for buckling is obtained as

(6/5L - 6/5L -1/10  1/10 | '51“
6/s.  1/10 1/10 s,
= .;- ~
U=310e 6,8 6,1F 2L/15  -~L/30 0,
i 2L/15_ L_92 ]

where the kernel matrix is the buckling matrix. A unit axial
load of F=1 is assumed here. L is the beam length.

The degrees of freedom are shown in the following sketch.

i
4
(y 13 into paper)
A 2
&= > %




BAR ~ 1/2

Subroutine BAR calculates (on option) finite element (1) mass
matrix; (2) stiffness matrices (same as global load transformation
matrices); (3) buckling matrices for unit load; (4) local load
transformation matrices; (5) stress transformation matrices; and
(6) vectors to locate the DOF (de'.rees of freedom) of the above
matrices in the global DOF, for . mbined axial-torsion-bending

bar elements. The above matrices and vectors are written on disk
units and constitute the output from this subroutine. All matrices
are in dense programming logic.

Each mass, stiffness, an.. buckling matrix, size 12x12, is in the
global coordinate directions. The global coordinate order for
each element is (U, V, W, P, Q, R) joint 1, then joint 2 where
U, Vv, " are translations and P, Q, R are rotatious. If the
Euler angles are zero at a joint, then U =4, V=6 , W=25§_,
P=6,,Q=6,,"=6,. X Y z
X’ Y’ Z
Each global load transformation matrix, size 12x12, relates loads
at the bar ends in the global coordinate directions to deflections
in the global coordinate directions. The row order in this matrix
is (PU, PV’ Pw, MP’ Mq, MR) joint 1, then joint 2 where P is force

and M is moment.

Each local load trans: ormation matrix, size 12x12, relates loads at
the bar ends in the local coordinate system to deflections in the
global coordinate directions. The row order in this matrix is

Prrs P Myge Myps Pypo Pugs Mops Mg Progs Pags Myp» Moy, where
P is force and M is moment.

Each stress transformation matrix, size 12x12, relates stresses
a2t the bar ends in the local coordinate system to deflections in the
g;lobal coordinate directions. The row order in this matrix is

] %*
Paa P Ma'n Mp'th
» » 1] 9
A A, ) 7,
% ]
Por By My tey Mty
’ L] ]
AT R T 1z2
P B My te, My tey
1] ’ ]
AT A o1 L2



BAR - 2/2

vhere P is force, M is woment, A is cross~-sectionsl area, r is
distance from torsion axis (x), to outer fiber, J is cross-
section. Saint Venant's torsion constant in JG, ¢ is distance
from bending neutral plane to outer fiber, and * is area
momept Of inertia. . :

Each location vector (IVEC) locates the DOF of each finite element
in the global DOF. For example, IVEC(6)=834 places elemsnt DOF 6
into global BOF 834. IVEC(3)=0 omits element LOF 3 froa global
DOF. This coastrains elesent DOF 3 to zero motiocm.

‘These matrices are calculated by using joint data and element

data. The joint data is obtained from three matrices input to this
subroutine which are (1) joint global X, Y, Z locations; (2) joint
global DOF numbers; and (3) joint Buler angles.

The element data are (1) options for mass, stiffness, local load
transformations, stress transformations; (2) element material
properties, and (3) element joint numbers.

Each mass matrix is calculated by transfer to subroutine MAS1B.

Each stiffness matrix, loads, and stress transformation matrix is
calculated by transfer to subroutine STF1B. Each unit load buckling
matrix is calculated by transfer to subroutine BUC1B.



BUC1B - 1/3

Subroutine BUC1B calculates a finite element buckling (sometimes
referred to as geometrical stiffness, initial stress, or stability)
matrix for a combined axial-torsion-bending bar element with un-
restrained boundaries. The buckling matrix is based on unit axial
load.

The buckling matrix, size 12x12, is in the global coordinate directions.
The global coordinate order for each element is (U,V,W,P,Q,R) joint 1,
then joint 2 where U,V,W are translations and P,Q,R are rotations. If
the Buler angles are zero at a joint, the u-cx, v-ay, H-Gz, P-ex,

Q=0,, R=0,.

This matrix is calculated by first computing a buckling matrix in
the local coordinate system for either an axial rod (where the
buckling matrix is sometimes referred to as the string stiffness)
or a beam. A direction cosine matrix is then used to transform
the buckling matrix from the local coordinate system to the global
coordinate system.

DESCRIPTION OF TECHNIQUE

The calculation of the buckling matrix in the global coordinate
directions is accomplished as follows. First a buckling matrix
is calculated in the local coordinate system for either an axial
rod (reference Subroutine BlAl) or a beam (reference Subroutine
B1A2).

A sketch of the bar is given for reference as

2 (local 2z is out from paper)



coordinates is

U= M) ) )

wvhere
) =16, 8,0 0,0, 1 88,8,
and
ro
0
0
0
b1 P12 P13
o - bar P2z Py
L I VR PR T
b P2 Pas
-

b refers to terms from Subroutines B1lAl or BlA2.

i)

°z2
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32

42

BUC1B - 2/3
The strain energy for buckling or geometric stiffness using local

13
23

33

43

(1]

The deflections in the local system are related to deflections in the

global system by
(h } = [A] {ng}

(2]




where [Y] 18 a direction cosine matrix (reference Subroutine
DCOS1B) including Euler angles, size 12x12, and

T
(hg}" = [0y V) ¥y Py Y By Uy T Wy Py Qp Byl
U, V, W are translations and P, Q, R are rotations.

Substituting Eq [2] into Eq [1] gives
1 T )
U= 0 {hc} [bG] {hc}

where [bG] = lle [bL] {v] is the buckling matrix in' global

* coordinate directions.

BLC1B - 3/3

(3]



DCOS1A - 1/2

Subroutine DCOS1A calculates a direction cosine matrix for an
axial rod element. This matrix relates local coordinate displace-
ments to global coordinate displacements. Euler angles at each
joint are included. Global X, Y, Z coordinates and Euler angles
at each of the two rod ends are needed for this calculation.

DESCRIPTION OF TECHNIQUE

A sketch of the rod is given for reference as

x (origin at point 1)

> <
~N

4

)
~y

The vector P between points 1 and 2 is

The unit vector is then

-l

e = [Px I+ PY J + Pz K]/R,P

where

=% X
Py=¥ym Yy
P, =2, -2,

(1]

(2]



DCOS1A - 2/2
The coefficients of i; 3.'E for the unit vector :; are the
direction cosines of the line between points 1 and 2.

The relation between local and global X, Y, Z displacements is
then

Sa [ep] 0 {éxvz}l
= [3]
6x2 0 [e?] {Gsz}z
where
6X
{GXYZ) = 6Y

!.62 -

A 3x3 Euler angle transformation matrix (reference subroutine EULER)
relates global X, Y, Z translations to global U, V, W translations
at each joint. That is,

{SXYZ}I [E]l 0 {UVU}1
R (41
{GXYZ}2 0 (E)z {va}2
where
U
{UW} = j Vv
W
Substituting Eq [4] into Eq [3] gives the direction cosine matrix.
le [eP]1 0 {UVW}1 (5]
ze = 0 [eplz {UVW}2
where

[epll = [eP] [E]l, etc.



DCOS1B - 1/5

Subroutine DCOS1B calculates a direction cosine matrix for a
combined axial-torsion-bending bar element. This matrix relates
local coordinate displacements to global coordinate displacements.
Euler angles at each joint are included. Global X, Y, Z coordinates
and Euler angles at each of the two bar ends plus coordinates

of a reference point are needed for this calculation. The ref-
erence point defines the local xy plane.

DESCRIPTION OF TECHNIQUE

A sketch of the bar is given for reference as

X

y . 3(reference point)/v

2

P

o)

local z and'ﬁ are out from paper

T

—- -—» X
/l? 1
A

-
The vector P between peoints 1 and 2 is

+ sallown i
X PY J + PZ K
The unit vector is then

)

= -‘-F T 4 -‘/
ep = B, T+2. Ter X1/,

[1]

(2]



DCOS1B - 2/5

.‘62 2 2
QP X + PY + Pz
The coefficients of f. 5, X for the unit vector .;P are th. direction

cosines of the line between points 1 and 2.

The vector cross poduct P x1, 3will give a vector ® L plane
1, 2, 3.

E=?xT3=[%?+P{3+%§]XH%Jﬁ?+(%49?+(%4ﬁi]
=R, I +R,J+R, K. (3]

The unit vector along R is then

'e’R = [RX—f+FY-J-+ Rz'i]/szR [4)

where

Ry = By (2,-2)) - B, (¥,Y))
Ry = By (Xy=X)) - Py (25-29)

RZ = Px (YB-YI) - pY (x3—x1)

o = k2 2 2
R X+R, +R,

The coefficients of "f, 3, K for the unit vector 'ER are the direction
cosines of a lir>_ plane 1, 2, 3.

The vector cross product R < P will give a vector (6) J line 1, 2 in
the plane 1, 2, 3,

Q=R"P=[RXI+RXJ+RZK]X[PXI+PYJ+PZK]
(5]
=QXI+QYJ+ QZK].



The unit vector along '6 is then

')

where

O =Ry By =By By
Q=R By~ KFy
T By Py Ry Py

The coefficients of E;

1 e - ol
T TN

cosines of a_l_line 1, 2 and in the plane 1, 2, 3.

DCcosis ~ 3/5

(6]

K for the unit vector e. are the direction

The relation between local and global X, Y, Z displacements is then

~

le

6x2

exl

°x2

Gyl
oy2

ezl

ez2

6zl

522

51

6y2

r-

(ep]

]

[e

leg]

[e

e

[e

)

]

[e

(e

{e

pl

Q!

)

lep]

le,]

r

{8
{8
{6

{8

XYZ}l

XYZ}l

XYZ}Z

}

XYz 24



DCOS1B - 4/5

where {GXYZ} = 6x and {SXYZ} = ex (7]
6Y eY
6Z eZ .

A 3x3 Euler angle transformation matrix (reference subroutine EULER)
relates global X,Y,Z displacements to global U,V,W translations and
P,Q,R rotations. That is,

- -~ - -~ - 7
{GXYZ}I [E]l {UVW}I
{BXYZ}l [E]l {PQR}l
= (8]
{GXYZ}Z [E]2 {UVW}2
_{eXYZ}Zd i [E]zd _{PQR}ZJ
where {UW} = v and {PQR} = P
v Q
W R

Substituting Eq [8] into Eq [7] gives the direction cosine matrix.

- -y - ” —— t——

5:<1 [eP]1 P{UVW}I
$2 lepl, {PQR},

1 [epll {UVW}2

“x2 lepl, (PQRY,

syl [eQ]1

5y2 [e

ezl [eR]1
%22 legl,

ézl (e

R]l
422 [eg],

‘i1 legdy

Yy2 [eq];

e et ban —




DCOS1B ~ S/5
where

[e,,]1 = [ep] [Ell etc.



DCos2 - 1/6

Subroutine DCOS2 calculates a direction cosine matrix for a com~
bined membrane-bending triangle plate element. This matrix relates
local coordinate displacements to global coordinate displacements.
Euler angles at each joint are included. Global X, Y, Z coordinates
and Euler angles at each of the three corners are needed for this
calculation.

DESCRIPTION OF TECHNIQUE

A sketch of the triangle plate is given for reference as

local z and'g are out from paper

al]
)

The vector P between points 1 and 2 is

e e F -l
P=P I+P J+P, K {1}

The unit vector is then

ep = [By T+P J+P K/t (2]



DCOS2 - 2/6

where

SR T

Py=¥y- Yy )
Pyl

.‘62 2 2
EP x+PY+Pz

The coefficients of I, J, T(- for the unit vector ?P are the

direction cosines of the line between points 1 and 2.

: i, emmstpadiion. i
The vector cross product P x 1, 3 will give a vector ® L plane
l, 2, 3.

it

R=P xT,3= (B, T+ P2 T +P, K] x (X)) T+ (Y3Y)) I+ (2,-2)) K]

=R T+RT+R X (3]
The ynit vector along'f is then
e, - [RXT+EY'.T+ R, Ki/2g (41
where
Ry = By (2572)) = 7y (¥57Vp)
RY = Pz (x3-x1) - PX (23-21)
R, = Py (Y=¥)) = By (Xy=X,)

= RZ + RZ + B2
bp = Ry + Ry +RY

The coefficients of ‘f, -3-. X for the unit vector e, are the direction
cosines of a linel. plane 1, 2, 3.



pCos2 - 3/6

The vector cross product E* Fwill give a vector (-6)_L11n\ 1, 2
in the plane 1, 2, 3.

-l iy, «lin -t - i e liny il
Q-RxP-[lS(I+RY LRzqu[Px1+PYJ-+PzK]

= + .

O 1+0QyJ+Q,K

The unit vector along R is then
iy = _1— -l i, e
3, [T+ T+, (6]
wherg

% =R Py -Ry By

Qp =R, Py =Ry P,
Q = Ry Py = Ry Py

,1/2 2 4+ a2
EQ QX+QY+QZ

The coefficients of -T, -J-. X for the unit vector eQ are the direction
cosincs of a line .. line 1,2 and in the plane 1, 2, 3.



DCOS2 - 4/6
The relation detween local and glcbal X, Y, Z displacements is

- - - - r -

sx [.P] {Gm}l
¢ [te {enz)l
2 leg) torvala
LAY lep] (8xyats
8 [e,] {an}3
8. )2 leg] “xtz}a_

‘ 8 (ep]

sy [eQ]
Y

5 lep) (7

e lep)
] 1 [eQ]

8, ! [eg]
4

8. legl

Qx‘ [eP]
6.) 4 le.]




DCOS2 - 5/6
where {Gx!z} = |6 and {exyz} = |6

X X
Sy by
) %21 .

A 3x3 Euler angle transformation matrix (reference subroutine EULER)
relates global X, Y, Z displacements to global U, V, W translations
and P, Q, R rotations. That is,

6] [te, 1 [town,]

©yyzhy [E], (PQR},

LI ) ) (E], {uwil, (8]
(exvz}z [E]z {PQR}2

L [E], {uwi},

(6yyz)5 [E], {PQR}, |

where {UW} = JU| and {(PQR} = | P

v Q
W R

Substituting Eq [8] into Eq [7] gives the direction cosine matrix.



DCOS2 - 6/6

‘6* (lep], 7 [row, ]
& } legly {Par},
le le]y {uwl,
lepl, {Pqrl,
{ } [ey]2 fuww},
legd, -{PQR}:’J
leply
R
2 legly
nay legly
A
[eQ]1
(] "
Q8 lep],
l o ’2 legly
‘ *2 legls
6 } ’["?13
l I [eQ]B_J

Where [epll = [eP] [E]l, etc.



EULER - 1/4

Subroutine EULER calculates the Ruler rotation transformation

matrix such that

X (U

Y ;= [T] v

Z W
where

X

Y ; = global X, Y, Z coordinate system.

<

= rotated U, V, W coordinate system.

{T] = Euler rotation transforwmation based on a global Ox, 6

and 92 permutation.

DESCRIPTION OF TECHNIQUE

YI

The first Euler rotation is 6, about X to form the X, Y°, Z~

coordinate system. X

> Y



RULER - 2/4

The relationship between the two coordinate systems can be
written as

o) B b
I L

where
1 0 0
['l‘ex] = 10 c:t:»sex —sinex
0 smex cosex

The second Euler rotation is GY about Y to form the X°°, Y°°, 2"~
coordinate system.

X A X
\
\
\
\
\
\\ /4'2”
\ ’,——"'
\ //—"‘jey
@"’ —Z"
Y-,y o~

The relationship between the two coordinate system can be written
as

(
l

X') X
Y = [TGY] Y
Z

| -



EULER - 3/4
wvhere

cosaY 0 sinGY

[TﬂY] = 10 1 0
-sineY 0 co:OY

The third Euier rotation is Bz about Z°° to form the U, V, W
coordinate system.

v
\
\
\
\
\\
U
\\ S
,/”’ —‘ez
’x"
2™

The relationship between the two coordinate systems can be written
as

x’) ‘U'
Yoo o= [T0,) lv’
y At W
where
cosez -sinez 0
[Tez] sinez coaez 0

0 0 1



EULER - 4/4

The complete Buler rotation transformation can be written as

[ = [16,] [To,] [T6,]

Performing the three multiplications results in

(T} =

b

COSQY cosez —coseY sinaz sineY

cosex sinez cosex cosez ~sin6x coaeY
+sin9x ainﬁY cost —sinex sineY 8ind

sinex sinez sinex cosaz cosex coseY
—cosex sineY cost +cosex sineY siné




FINEL

Subroutine FINEL calculates (on option) using finite elements:
1) an assembled mass matrix; 2) an assemblad stiffness matrix;
3) element local load transformation matrices; 4) element glo-
bal load transformation matrices; 5) element stress transforma-
tion matrices; 6) element unit load buckling matrices; and 7)
vectors (IVEC) to locat: the DOF (degree of freedom) of the
element matrices in the global DOF,

The types of finite element available (and the related
subroutine) are axial rod (AXIAL), combined axial-torsion-
bending bar (BAR), triangular plate (TRNGL), quadrilateral
plate (QUAD), rectangular shear panel (RECISP), tetrahedron
(TETRA), and pentahedron (PENTA). The subroutine to be used
is specified by reading this information (e.g., AXTAL, BAR,
etc.) from an input data card.

The assembled mass and stiffness matrices are output from
this subroutine in sparse FORMA subroutine format on disk units.
The DOF order is specified by a joint degree-of-freedom matrix,
[JDOF] , which is input to this subroutine.

The element matrices and vectors are in dense programming
logic and written on disk units as output from-this subroutine
also. The sizes of these element matrices and vectors are de-
termined by the specific finite element used. Each vector
(IVEC) locates the DUF of each finite .element in the global
DOF. For example, IVEC(6)=834 places element DOF 6 into global
DOF 834. IVEC(3)=0 omits element DOF 3 from global DOF. This
constrains element DOF 3 to zero motion.

The finite element matrices are calculated by using joint
data and element data. The joint data, obtained from three
matrices input to this subroutine, are 1) joint global X, Y, Z
locations; 2) joint global DOF numbers; and 3) joint Euler
angles. The element data is read in the specified finite ele-
ment subroutine. Reference AXIAL, BAR, etc. for this data.

Assembly of the element mass (or stiffness) matrices into
the assembled mass (or stiffness) mat:ix for the total structure
is accomplished by FORMA subroutine YRVAD2 to obtain the sparse
subroutine format,
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Subroutine K1Al calculates a stiffness matrix and stress trans-
formation matrix for an axial rod element with unrestrained
boundaries. The stiffness matrix is in the local coordinate sys-
tem of the rod. The elements of the stiffness matrix represent
the distributed stiffness properties of the rod. These elements
are calculated by assuming constant axial force. The stress
transformation matrix relates stress at the rod ends in the local
coordinate system to deflections in the local coordinate system.
The rod may be linearly tapered or uniform.

DESCRIPTION OF TECHNIQUE

The replacement of the distributed axial stiffness of a rod by
a stiffness matrix is obtained using a strain energy approach as
follows.

Consider a rod that is loaded with an axial force P, at point 1

1
and restrained at point 2 as shown in the sketch.

Rod Element

The sirain energv is defined by
X
2 2
=1 Pl
v 2S A0 Em 9% (1]
%
Where
is the axial force,

is the cross-sectional area,

is Young's modulus of eciasticity

® to > o

is the local coordinate system and longitudinal axis of the rod.
The origin is at point 1, that is, % = 0; Xy = L (rod length).
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To integrate Eq (1], the axial force is assumed constant and equal
to the axial force at point 1, that is,

P(x) = Pl'

Young's modulus of elasticity is also assumed constant, that is,
E(x) = E.
The cross-sectional area is assumed to vary linearly, that is,

A(x) = A, + x (Az-Al)IL.

1

Substituting Eq [2] through [4] into Eq [1] gives the strain
energy as

p2 L
v=1 1 1 dx
2 E . Al + x (Az-Al)IL
2
p
1 P
2 A, A) E tn (Ay/4y)

Application of Castigliano's theorem gives the axial deflection
of point 1 relative to point 2 as

P.L
3y 1
A = = = tn (A,/A))
aP1 (A2 Al) E 21
from which
(Az-Al) E

AS

1- T tn (A, 78)

The restraint at point 2 is removed by application of the trans-
formation

o

A8 = {1 -1)

On

(2]

(3]

(4]

(5]

(6]

(71

(8]
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where 61 and 62 are the displacements along the rod x-axis at
rod-ends 1 and 2, respectively. Substitution of Eq [7] and
Eq [8] into Eq [6] gives the strain energy for a rod with un-
restrained boundaries as

z 2 §
U= 1 (6. 5.1 1,1 1,2 1
2 1 2 (sym) z 5 (9]
2,2 2 .
where
. } (A2-A1) E (10]
1,1 L 1n (A2/A )
1
1,277 %1, [11]
3,2~ %1,1 [12]
The kernel matrix of Eq [9] is the stiffness matrix that re-
presents the axial stiffness of a rod with unrestr. ined boundaries.
For constant cross-sectional area, i.e., Al = A2 = A, Eq [10] is of
indefinite form. For this case integration of Eq [5] yields
1 Pi L
U= 2 "AE [6a]
from which
AE
107 1 (10a]
as before
21,2 " %11
222" %11

The elements in the stress transformation matrix are easily calculated.
The follewing sketch shows the sign convention.

— o x

1 , 2
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The rod end forces (Pl, P2) can be expressed in terms of the -
rod end displacements (61, 52) as

21 21 %120 |

- [13]

4
P2 sym) zZ.lJ 62

This is obtained from Eq [7] or applying Castigliano's theorem to
Eq [9]). The stress at the rod ends is simply

8, = PllAl
and

s, = Py/a,

orx

= [T.] [14)

[r,] = [15]

is the stress transf.cmation matrix.

81 s2 will be opposite in sign. Tension and compression in the

rod is determined as follows:

Tension: 8, (=), 8, +)

Compression: s, (+), 8, ()
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Subroutine K1Bl1 calculates a stiffness matrix and stress trans-
formation matrix for a bending (plus snear) beam element with
unrestrained boundaries. The stiffness matrix is in the local co-
ordinate system of the beam. The elements of the stiffness matrix
represent the distriluted stiffness properties of the beam. These
elements are calculated by assuming uniform shear and linear bend-
ing moment variation. The stress transformation matrix relates
stress at the beam ends in the local coordinate system to deflec-
tions in the local coordinate system. The beam may be tapered or
uniform.

DESCRIPTION OF TECHNIQUE

The replacement of the distributed bending and shear stiffness of
a beam by a stiffness matrix is obtained using a strain energy
approach as follows:

Consider a beam that is loaded with a shear and moment at point 1
and restrained at point 2 as shown in the sketch

Ml
1

The strain energy is defined by

1002 um? v(x)?
v- ES (E(x) O YO R dx

X

1

(1]
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where

M(x) is the bending moment,
V(x) 1is the shear,
E(x) 1is Yourg's modulus cf elasticity of the material,

I(x) i3 the cross-sectional moment cf inertia about the
beam's neutral axis,

K is the shape factor (e.g., K = 1 for a solid circular
cylinder, K = 0.5 for a thin walled circular cylinder),

A(x) is the cross-sectional area,

G(x) 1is the shear modulus of elasticity of the materiel,
and

x is the local coordinate system and undeformed lo.gituainal
axis of the beam. The origin is at point 1. That is % = 0;
x, = L (rod length).
To integrate Eq [1], the fcllowing assumptions are made. First,
the shear is assumed constant and equal to the shesr forcs at point
1, that is,

V(x) = Vl. [2)

Second, the bending moment is assumed to vary linearly, that is,

M(x) = M, + V. x [3])

1 1
Third,

I(x) and A(x) are assumed to vary linearly, that 1s

I(x) = I, +x (12-11)/L [4a]
and
A(x) = A+ x (AZ-A1>/L (4]

Fourth, the moduli of elasticity, E and G, are assumed constant,
that is

E(x) = E [5a]

G(x) = G [5b]

Substituting Eq [2] through [5] intv Eq [1] gives the strain energy
.8
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L 2
v=1w u} 1 =X . 1
211 BT, +x (T,-I)/LY |x 1 KG{A, + x (A,-A) /L)
Jo -
[v
[} o] w |l (6]
0 O M
1
£ £
1 11 121 v
=2 byl 1 (7
(sym) f£,,
where
3 ' A
L 1 1 1 L 2
£f,2 o |5-== + tn R| + ———— ta = [7a]
11 El (R-D) [2 R-1 (R-1)2 ] KG(A,-A) A
2
L 1
f2 " EL, (&) [ "Rl n] (7]
f._ = ——Lt—  gnR (7c]
227 EI (R-D)
R = 12111 [7d]

For constant bending stiffness, i.e., EIL,L = EIZ = EI, and constant

1
shear stiffness, i.e., KAIG = I(AZG = KAG, Eq [7a] [7b] [7¢] are

of indefinite form. For this case, integration of Eq [6] yields

£ = L3/3EI + L/KAG [8a]
f.,. = L2/2EI (8b]
12

£y, = L/EI [8c]

Application of Castigliano's theorem to Eq [7] gives the lateral
translation and rotation of point 1 relative to point 2 as

28 3 £ £ v
[ = v, - |- 1 12] 1 (9]
16 £ M

i L(sym) 221 1
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Solving Eq [9] for V. and Hl and substituting into Eq [7] gives

the strain energy as

1

fzzln -flzln AS

U= %-[AG 28) [10)
(sym)  £,,/0] [s0

where

2

f12‘

D=£), %"

The restraint a point 2 is removed by application of the transformation

AS [1 -1 0 ~L] 5,
A® o o 1 -1] [|% [11)
&
)
Using this transformation in Eq [10] gives the final strain energy
expression as
[ 706
211 %12 %13 % 1
2 2., 2
U =-% [same as column] 22 23 24 62 {12]
(sym) 233 %3 8
244 %
e [ N S
21 = £/
212 7 %11
z)q = -fIZ/D
21, = (L fy5 + £,9)/D
%22 T %11
237 7 %13
%04 T Ty
2q4q = fll/D
234 " (L le - fll)/D
cale
24y = (L7 £y = 2L £, + £)/D
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The kernel matrix of Eq [12] is the stiffness matrix that repre-
sents the bending and shear stiffness of a beam with unrestrained
boundaries.

The elements in the stress transformation matrix are calculated
as follows. The following sketch shows the sign convention,

z
1 = g - x
2

Applying Castigliano's theorem to Eq [12] gives the forces at the
beam ends in terms of the displacements at the beam ends, that is,

By r [ &
eU/asy v 5 |
au/ 36, v §
‘e - |2
oU/ael Ml 61
3U/392 MZ 92

The shear stress is calculated as

T =V/A

and the bending stress is calculated as
o = Mc/1

where ¢ is the distance from the beam's neutral axis to the outer
fiber.
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Therefore,
p— ﬂ pra— —— e Gty
L VllA1 61
T2 Vy/A, )
oy | = M/ | - 1s1]%3
% L"z‘z“z 8
S - e ol
where
— -
Z (row 1)/Al
Z (row 2)IA2
[TS] =
Z (row 3) clll1
Z (row &) c./1
- 2°°2 ]

is the stress transformation matrix
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Subroutine KI1Cl calculates a stiffness matrix and stress trans-
formation matrix for a torsion rod element with unrestrained
boundaries. The stiffness matrix is in the local coordinate sys-
tem of the rod. The elements of the stiffness matrix represent
the distributed stiffness properties of the rod. These elements
are cilculated by assuming constant torque. The stress trans-
formation matrix relates stress at the rod ends in the local co-
ordinate system to rotations in the local coordinate system. The
rod may be tapered or uniform.

DESCRIPTION OF TECHNIQUE

The replacement of the distributed torsion stiffness of a rod by
a stiffness matrix is obtained using a strain energy approach as
follows.

Consider a rod that is loaded with a torque T
restrained at point 2 as shown in the sketch.

1 at point 1 and

1
Tl 2
- X
Rod Element

The strain energy is defined by

X

2 2
_ 1 T (x)

U= zs I 6o & (1]

1
where

T 1is the torque

J is Saint Venant's torsion censtant,
J = 71R%/2 for a solid circular section
J = 2nR3t for a thin walled circular section

G is the shear modulus of elasticity

x 1is the local coordinate system and longitudinal axis of the rod.
The origin is a point 1, that is X = 0; x, = L (rod length).
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To integrate Eq [1], the torque is assumed constant and equal
to the torque at point 1, that is,

I(x) = L [2)

The shear modulus of elasticity is also assumed constant, that is,

G(x) =G i3]
Saint Venant's torsion constant is assumed to vary linearly, that is,
J(x) = J1 + x (Jz-Jl)IL. _ {4]

Substituting Eq [2]) through [4] into [1) gives the strain energy
as

TZ L
2 G . J1 + x(Jz-Jl)lL
1 Ti L
= °2- &) _Jl) C in (leJl) [61

Application of Castigliand's theorem gives the rotation of point 1
relative to point 2 as

T, L
U 1
A§ = = B ——m——e—m— in (J /J) .
BTl (Jz-Jl) G 2°"1
. (Jp=J)) G
from which Tl - ifi;~?3;73;) A6 [7;

The restraint at point 2 is removed by application of the
transformation

5]
=11 -1 |1} (8]

%2

where 91 and 62 are the x-rotations at rod ends 1 and 2, respectively.

Substitution of Eq [7] and [8] into [6] gives the strain energy for
a rod with unrestrained boundaries as

21,2 °1

Ha
(9}
(sym) 22’2 62

. 1
U= 5 le) 8,
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where
. (JZ-JI) G
1,1 L 2n (JZ/JI)

z [10]

z = - 2 {11]

1,2 1,1

(12]

22,27 %

The kernel matrix of Eq [9] is the stiffness matrix that repre-
sents the torsional stiffness of a rod with unrestrained
boundaries.

For a constant cross section, i.e., J1 = J2 = J, Eq [10] is of

indefinite form. For this case, integration of Eq [5] yields

1 0
V=33 (6al

tfrom which

JG
21’1 = -L— [103]

as before

z = - 2

1,2 1,1

z = 2

2,2 1,1

The elements in the stress transformation matrix are easily calculated.
The following sketch shows the sign convention.

Tl’ 61 T
1l gt O et X

The rod end torques (Tl, TZ) can be expressed in terms of the rod

end rotations (91, 82) as

T 2 81

Y 1,1 1,2 [13)
T2 (sym) :;2'2 82
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This is obtained from Eq [7) or applying Castigliano's theorem to
Eq [9). The maximum stress is in the outermost fiber-and is

8 = Tl rllJ1

and

s, = Tz r2/J2.

or
51 21
= [T_]

s2 s 62
where

2), N 22 O/
[r,1 =

251 T/, 2, 2 5/,

is the stress transformation matrix.
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Subroutine K2Al calculates a stiffness matrix and stress trans-
formation matrix for a membrane triangle plate element with
unrestrained boundaries. The stiffness matrix is in the local
coordinate system of the triangle plate. The elements of the
stiffness matrix represent the distributed stiffness properties

of the triangle plate. These elements are calculated by assuming
a quadratic displacement (linear strain) field. The stress trans-
formation matrix relates stresses at the triangle vertices in the
local coordinate system to deflections in the local coordinate
system.

DESCRIPTION OF TECHNIQUE

The replacement of the distributed membrane stiffness of a triangle
plate by a stiffness matrix is described in DM 109 Linear Strain
Membrane Triangle Element by W. A. Benfield and C. S. Bodley.

The triangle is illustrated i.. the sketch with the degrees of
freedom shown

The order of the degrees of freedom is
£ 3 8 § 46
D X 0y ezll [cx y ez]2 [ X 0y 62]3]
The row order of the stress transformation matrix is
[[nx cy Txyll [ox Uy rxy]2 [ox ay Txy]B]

where ¢ is normal stress and 1 is shear stress.
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Subroutine K2B1 calculates a stiffness matrix and stress trans-
formation matrix for a bending triangle plate element with un-
restrained boundaries. The stiffness matrix is in the local co-
ordinate system of the triangle plate. The elements of the stiff-
ness matrix represent the distributed stiffness properties of the
triangle plate. These elements are calculated by assuming a cubic
displacement (linear curvature) field. The stress transformation
matrix relates stresses at the triangle vertices in the local
coordinate system to deflections in the local coordinate system.

DESCRIPTION OF TECHNIQUE

The replacement of the distributed bending stiffness of a triangle
plate by a stiffness matrix uses the technique (essentially)
described in Triangular Elements in Plate Bending by C. P. Bazely,
Y. K. Cheung, B. M. Irons, and 0. C. Zienkiewicz, AFFDL-TR-66-80,
November 1966. The triangle is illustrated in the sketch with the
degrees of freedom shown

(z is out from paper)

‘Y

The order of the degrees of freedom is

[[az 0, 8,0y [8, 8, 81, (8, 6, ey13] .
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The row order of the stress transformation matrix is

[[ox oy Txy]l [ax °y ‘l’xylz [cxx oy Txy]3] at z = - t/2, and
{["x % Txylt [ %y Tiyl2 o, 9y Txy]:«] at z = +t/2,
where

o 1is normal stress
1 1is shear stress
t is plate thickness.
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Subroutine M1Al calculates a lumped mass matrix for an axial rod
element with unrestrained boundaries. The mass matrix is in the
local coordinate system of the rod. The elements of the mass
matrix represent the distributed mass properties of the rod.
These matrix elements are calculated by lwmping the rod's total
mass to the rod end points using static equivalent forces. The
rod may be linearly tapered or uniform.

DESCRIPTION OF TECHNIQUE

The replacement of the distributed mass of a rod by a mass matrix
is obtained by lumping the rod's total mass to the rod end points.
This lumping is equivalent to static beaming. The rod is illus-
trated in the sketch in which the rod cross-sectional area varies
linearly, that is, A(x) = A, + x/L (AZ_AI)'

1

The total mass of the rod is

M=plL (A1+A2)/2 (1]

where

¢ 1is the mass density

A 1is the cross-sectional area

L 1is the rod length

x 1s the local coordinate system and longitudinal axis of the rod

with origin at point 1, that is X, = 0; X, = L.

The equivalent mass at rod end 2 is calculated by t-~xing the first
moment about rod end 1.
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MZL - PAxdx

ps
= o (A1 + I (Az-Al)) x dx

‘0

OL2
" e (2 A

from which

- fL
M, 3 (A1+2 A) [2]

and Ml = M - Mz

L

oﬂv

(ZAl + Az). [3]
The kinetic energy of the rod elemeit is expressed as

. . M 0 é (t)
1 N 1 x1
T= E-[sxl(t) txz(c)] .

0 M, ze(t)

(4]

Me kernel matrix of Eq [4) is the mass matrix that represents the
distributed mass of the rod.
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Subroutine M1A2 calculates a consistent mass matrix for an axial
rod element with unrestrained boundaries. The mass matrix is in
the local coordinate system of the rod. The elements of the mass
matrix represent the distribu.ed mass properties of the rod.

These matrix elements are calculated by assuming the displacemeut
between the rod ends to be a linear function of the displacement
at the rod ends. The rod may be linearly tapered or uniform.

DESCRIPTICN OF TECHNIQUE

The replacement of the distributed mass of a rod by a mass matrix
is obtained using a kine*ic energy approach as follows.

For small Jdeflections (8) along the longitudinal axis (x) of the
rod shown in the sketch, the kinetic energy is defined by

Nji—

X
2 “9

s pA(x) 6% (x.t) dx [1]
*1

where

p 1is the mass density

A 1is the cross-sectional area

§ 1is the time rate of change of displacement along the rod x-axis,
referred to as longitudinal velocity in the paper

t 1is timc

x 1is the local coordinate system and longitudinal axiz of the r«d
with oriiin at point 1, that is, x, = 0; x, = L (rod length).

Rod Element
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To integrate Eq [1} a Z.near displacement function will be
assumed between points 1 and 2 in terms of the displacements of
points 1 and 2, that is,

X
5(:) = 61 + E (62- 61)-

Similarly, the longitudinal velocity is given by

: : L - :
5(x,0) = §,(8) + & (8,() - 6,(€))

él(t)
1
=1 [(L-x) x] . [2]
Gz(t) .

The cross—-sectional area of the rod is assumed to vary linearly, that
is,

x
Wx) <A + T (Az-Al). (3]

Substituting Eq [2] and [3] into [1] gives the kinetic energy as

L
. . L-x
1., :
T =3 [5,(t) 5,(8)] 2—2 s (‘*1 +Z ‘Az"‘l’) [(L-x) ] ax
o X
5 (0) 3, +A, A, +A s.(ty| [4]
1 1 . oL 17 % Mt 1
. = 3 [él(t) -‘52(t)] 12 .
62(t) Al + A2 Al + 3A2 éz(c)

The kernel matrix of Eq [4] is the mass matrix.

The total mass properties of the rod may be calculated from the
following triple matrix product.

P e 1 1] [3 +a, A +a, 1 0
p° 1° H 0 u| |a, +a A, + 3A 1 L -
1 2 1 2
where
M 1is the mass of the rod
»° is the first moment about Xy = 0
1° is the moment of inertia about x, = O.

1



M1A2 - 3/3
Expanding the triple matrix product gives

M=op (A1+A2) L/2 [5a]
P° =p (A*A,) 12/6 [5b]
I°=p (A1+ 3A2) L3/12 [5¢]

The center of gravity is calculated from
o

Xeg P /M
(A1+ 2A2) L

= (Al‘+A2) 3 . [54)
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Subroutine M1Bl calculates a lumped mass matrix for a bending
beam element with unrestrained boundaries. The mass matrix is in
the local coordinate system of the beam. The elements of the mass
matrix represent the distributed mass properties of the beam.
These matrix elements are calculated by lumping the beam's total
mass to the beam end points using static equivalent forces. The
beam may be linearly tapered or uniform.

DESCRIPTION OF TECHNIQUE

The replacement of the distributed mass of a beam by a mass matrix
is obtained by lumping the beam's total mass to the beam end points.
This lumping is equivalent to static beaming. The beam is illus-
trated in the sketch in which the rod cross-sectional area varies
linearly, that is, A(x) = Al + x/L (AZ—AI).

- X

My, 1

(local y is into paper)

The total mass of the beam is

,

e
i

T

=5 L(A1+A2)/2 [1]

where

& 1is the mass density
is the cross-sectional area

is the beam length

F I -

is the local cocrdinate system and longitudinal axis of the
beam with origin at point 1, that is, X, = 0; X, = L.
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The equivalent mass at beam end 2 is calculated by taking the
first moment about beam end 1.

o L
ML = p Ax dx
Y0
oL
x
= o (A1 + i (Az—Al)) x dx

J0

2
pL
e (A

1+ 2A2)

M, = oL (A1+ 2A2)/6 (2]

From

Ml + Mz =M

Ml = pL (2A1+A2)/6 [3]

An artempt at calculating the inertias was made by taking the
second moment about beam end 1.

- m?/3

2
11 + 12 (Ml-2M2) L°/3

For a uniform beam, Ml = M2 = M/2

2
11 + 12 = - ML"/6

which is impossible. This says that lumping can never give the cor-
rect inertia values. Therefore, arbitrarily assume

3
I, = #a) L /24 (4]
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and
I, = oA, L3/24 (5]
2 2
The kinetic energy of the beam element is expressed as
— - =, =
4 4
s f6
T= % [same as column] Hz 2 ]
Il 81
I 8

The kernel matrix of [6] is the mass matrix that represents the
distributed mass of the beam.
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Subroutine M1B2 calculates a consistent mass matrix for a bending
beam element with unrestrained boundaries. The mass matrix is in
the local coordinate system of the beam. The elements of the mass
matrix represent the distributed mass properties of the beam.

The matrix elements are calculated by assuming the displacement
between the rod ends to be a cubic function uf the displacement at
the beam ends. The beam may be linearly tapered or uniform.

DESCRIPTION OF TECHNIQUE

The replacement of the distributed mass of a beam by a mass
matrix is obtained using a kinetic energy approach as follows.

For small deflections (¢é) normal to the longitudinal axis (x) of
the beam shown in the sketch, the kinetic energy is defined by

1{ 2 "2
T = E'S p Alx) 6 (x,t) dx [1]
1
where
p 1is the mass density

A 1is the cross-sectional area

§ 1is the time rate of change of displacement normal to the body
x~axis, referred to as lateral velocity in this paper

is time

x 1s the local coordinate system and longitudinal axis of the
beam with origin at point 1, that is, x, = 0; x
length).

2 ™ L (beam
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To integrate Eq [1] a cubic displacement function is assumed
between points 1 and 2 in terms of the displacements of points 1
and 2, that is,

8(x) = Ax3 + sz +Cx+D

= [x3 x2 « 1)

g O @ >

The angular displacement is obtained as the geometric derivative
of the lateral displacement, that is

o(x) = - _Bai(x)
= [-3x -2x - 1 0] [a
B
C
D

The coefficients A, B, C, D are determi... from Eq [2] and [3],
using the displacements at the beam ends.

51_1 o 0 o 1] [al
8 L3 L2 L 1 ).}
2
61 0 0 -1 0 C
0, L2 a1 ol |
From which
N
°1
B 82
cl= [v] 91
D <]

¥3!

(31

[4a]
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where
— —
ind  aand an?  an?
-3n? n? .
(v} =| 0 0 -1 0 [4b]
_} 0 0 0 HE
Using Eq [4a) in [2] and taking the time derivative gives the
lateral velocity as
e =
§,(t)
§,(t)
: 2
§(x,0) = [x° 2 x1 ) |. [5])
el(c)
Ll
The cross-sectional area of the beam is assumed to vary linearly,
that is,
Ax) = A, + X (a-A). (61
1 L 2 1
Substituting Eq [5] and [6] into [1] gives the kinetic energy as
XS X" x )-1
‘ - “ fo(0)
T l' {1 e a- colurm]r LIl xj ‘, * ALt % (A,-Al) dx | 1.) -2 ‘
- - » ox x < L)
2 ox o1 058, (7]
- {are s colunn)T ala 240A, 4723, 54A 4544, -(30A 41440 L (14A,4124,)L :x(t)
,2.\l+240.\2 -(12A1*16A2)L (1«A1+30A2)L tz(t)
(ryn) YRS TR S TR SN(S
i \3:\14-5:\2‘ '.2 R :Z(tl

The kernel matrix of Bq [7] is the mass matrix
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Subroutine MICl1 calculates a lumped mass matrix for a torsion rod
element with unrestrained boundaries. The mass matrix is in the
local coordinate system of the rod. The elemants of the mass
matrix represent the distributed inertia properties of the rod.
These matrix elements are calculated by Zumping the rod's total
inertia to the rod end points using static equivalent forces.

The rod may be linearly tapered or uniform.

DESCRIPTION OF TECHNIQUE

The replacement of the distributed inertia of a rod by a mass
matrix is obtained by lumping the rods total inertia to the rod
end points. This lumping is equivalent to static beaming. The
rod is illustrated in the sketch in which the rod cross-sectional
polar area moment of inertia varies linearly, that is,

+ x/L (PZ-PI)'

P(x) = P1

The total inertia of the rod is

I=opL (P1+P2)/2 Fl]

where

p .*s the mass density

P “a the cross-sectional polar area moment of inertia

L 1s the rod length

x 1is the local coordinate system and longitudinal axis of the rod
with origin at point 1, that is, X, = 0; x, = L.

The equivalent inertia at rod end 2 is calculated by taking the
first moment about rod end 1.
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oL
12 L= pPx dx
‘0
oL
X
= [d] (Pl + i‘ (PZ-PI)) x dx
)
2
= !i...l.‘.__
3 (P1+ 2?2)
from which
- oL p
12 3 (P1+P2) {2}
and
]Il = ] - 12
oL
6 (2P1+P21. [3]
The kinetic energy of the rod element is expressed as
T3 (é (t) 8 (v)] b ?ﬂ(t) (4]
2 xlg x2 0 12 exz(:)

The kernel matrix of Eq [4] is the mass matrix that represents
the distributed inertia of the rod.
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Subroutine M1C. calculates a consistent mass matrix for a torsion
rod element with unrestrained boundaries. The mass matrix is in
the local coordinate system at the rod. The elements of the mass
matrix represent the distributed inertia properties of the rod.
These matrix elements are calculated by assuming the displacem:zat
between the rod ends to be a linear function of the displacement
at the rod ends. The rod may be linearly tapered or vniform.

DESCRIPTION OF TECHNIQUE

The replacement ofrthe distributed inertia of a rod by a mass
matrix is obtained using-a kinetic energy approach as follows.

For small rotations (8) along the longitudinal axis (x) of the
rod shown in the sketch, the kinetic energy is defined by

1 (2 )
T= -is o P(x) 67 (x,t) dx
*1
where
o 1is the mass density
P i3 the cross-secéional polar area moment of inertia

is the time rate of change of rotation along the rod x-axis,
referred to as rotational velocity in this paper

t 1is time

x 1is the local coordinate system and longitudinal axis of the

rod with origin at point 1, that is, X, " 0; x, = L (rod length).

e X
ex2

Rod Element

To integrate Eq [1] a linear displacement function will be acsumed
between points 1 and 2 in terms of the rotations of points 1 aad 2,

that is,

s X -
q(x) = '-11 + L (92 91).

Similarly the rotational velocity is given by

{1}

e



M1C2 - 2/2

. . x . . 1 el(t)]
8(x,t) = 6,(t) + = (0,(t) - 6,(¢t) =+ [(L-x) x] |- ' [2)
1 L 2 1 L
ez(c) .
The cross-sectional polar area moment of inertia of theorem is
assumed to vary linearly, that is,
X
P(x) =P, +7 (P)-P)). [3]
Substituti g Eq [2] and [3] into [1] gives the kinetic energy as
L . 0 L - x Gl(t)
T= 2 [Gl(t) 92_(t)] =3 f (Pl + i Pz-Pl) [(L-x) x] dx } }|.
L x 8,(t)
o 2
1 oL |3ty B¥R ) 4]
=5 [8;(0) 8,(0)] 35 -1
(sym) P +3P, 8,(¢)
The kernel matrix of Eq [4] is the mass matrix.
The total inertia of the rod can be calculated by assuming a rigid
body mode of
e 1 .
I - 0 (5]
ez 1
Substitution of [5] ipto [4] gives T ~ > 167,
where
3P1+P2 I»‘1+P2 1
1-0 U5 | p+3p, | |1
172 172
(6]

= (?1+P2)/L2.
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Subroutine M2Al calculates a lumped wmass matrix for a membrane
triangle plate elenent with unrestrained boundaries. The mass
matrix is in tha local coordinatea system of the triangle plate.
The elements of the mass matrix represent the distributed mass
properties of the triangle. ’

DESCRIPTION OF TECHNIQUE

The replacement of the distributed mass of & membrane triangle
plate by a mass matrix is obtained by lumping the triangle's
totai mass to the triangle vertices. The triangle is illustrated
in the sketch with the degrees of freedom shown.

6y3

The total mass of the triangle 1is
M=ot x, y3/2 [1)
where

p 1is the mass demnsity
t 18 the plate thickness.
The mass at each vertex for a translation degree of freedom is

M/3. Because any inertia at a vertex will always be "heavy",
arbitrarily assume this value co be M/3 also.



The kinetic energy of the membrane triangle plate element is

expressed as
-

M/3

T= % [same as colum;]T

M/3

M/3

M/3

M/3

M/3

The kernel matrix of Eq [2] is the mass matrix.

M/3

4/3

1

M/3

M2Al

- 2/2

[2

]
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Subroutine M2A2 calculates a consistent mass matrix for s membrane
triangle plate element with unrestrained boundaries. The mass
matrix is in the local coordinate system of the triangle plate.
The elements of the mass matrix represent the distributed mass
prop>rties of the triangle. These matrix elements are calculated
ty assuming a quadratic displacement field.

DESCRIPTION OF TECHNIQUE

The replacement of the distributed mass of a membrane triangle
plate by a mass matrix is described im D.M. 169 Linear Strain
Mgmbrane Triangle Element by W. A. Benfield and C. S. Badley.

The triangle is illustrated in the sketch with the degrees of
freedom shown.

The order nof the degrees of freedom is

r A
5% 5y 9, 18, 6, 8,0, [, & 9213] .
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Subroutine M2Bl calculates a lumped mass matrix for a bending
triangle plate element with unrestrained boundaries. The mass
matrix is in the local coordinate system of the triangle plate.
The elements of the mass matrix represent the distributed mass
properties of the triangle.

DESCRIPTION OF TECHNIQUE

The replacement of the distributed mass of a bending triangle
plate by a mass matrix is obtained by lumping the triangle's total
mass to the triangle vertices. The triangle is illustrated in the
sketch with the degrees of freedom showm.

ey3

z is out from paper

6zl 6xl 6;2 x2
The total mass of the triangle is
M= pt x2y3/2 f1]
where
o 1is the mass density, and
t 1is the plate thickness.
The mass at each vertex for a translation degree of freedom is M/3.

Because any inert'a at a vertex will always be "heavy', arbitrarily
assume this value to be M/3 also.



The kinetic cuergy of the bending triangle plate element is

expressed as

T= % [same as coln-n]r

-
M/3

M/3

M/3

M/3

M/3

M/3

The kernel matrix of Eq [2] is the mass matrix.

M/3

M/3

s
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e
[

D Do
N < ]
[

PDe D O
n

O »
N <
~

Dr Do
L]

-<
w

[2]



M282

Subroutine M2B2 calculates a consistent mass matrix for a bending
triangle plate element with unrestrained boundaries. The mass
matrix is in the local coordinate system of the triangle plate.
The elements of the mass matrix represent the distributed mass
properties of the triangle. These matrix elements are calculated
by assuming a cubic displacement field.

DESCRIPTION OF TECHNIQUE .

The replacement of the distributed mass of a bending triangle
plate by a mass matrix uses the technique (essentially) described
in Trianglular Elemente in Plate Bending by C. P. Bazely, Y. K.
Cheung, B. M. Irons, and O. C. Zienkiewicz; AFFDL-TR-66-80,
November 1966. The triangle is illustrated in the sketch with
the degrees of freedom shown.

(z 18 out from paper)

The order of the degrees of freedom is

[[5z 6, 6,1, I8, 0, 6 1, 18, 8, ey13] .
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Subroutine MAS1A calculates a finite element mass matriix for an
axial rod element with unrestrained boundaries.

The mass matrix, size 6x6, is in the global coordinate directions.
The global coordinate order for each element is (U, V, W) joint 1,
then joint 2 where U, V, W are translations. If the Euler angles
are zero at a joint, U = 61’ V= 6?' W= éz. The mass matrix

may be either lumped or consistent.

This mass matrix is computed by first calculating s mass matrix in
the local coordinate system for either a lumped mass matrix or a
consistent mass matrix. Euler angles are them used to transform
the mass matrix from the local coordinate system to the global
coordinate directions. Direction cosines are not needed.

DESCRIPTION OF TECHNIQUE

The calculation of the mass matrix in the global coordinate direc-
tions is accomplish as follows. First a mass matrix is calculated
in the local coordinate system and can be given as ["L] = 7y 20

a1 ™

for either the lumped mass mttii (reference subroutine M1Al) or
the consistent mass matrix (reference subroutine M1A2). The off-
diagonal terms are zero for the lumped mass matrix.

A sketch of the rod is given for reference as
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The kinetic energy using local coordinates is

1 T ' DR
T= E—[sann'ls column) m, [1] ' m, [1] le
ccswcwoecde s amew e *
4§
(1] « w, [I 1
myp (11 4 my, 11 'Sy
zl (1]
Sy
6y2
6
| 22
vhere [I] is a unity matrix, size 3x3.
The deflections in the local system are related to the deflections
in the globsl coordinate directions by
6:1 E
N [v] [E) 3 0
1 | -==~=-- - s ssee {h,} (21
6 '
21 f=| o v IE,y)
Sx2
6y2
L622
where
[vy]l] 1is a direction cosine matrix, size 3x3,
[Ei] is an Euler angle transformation matrix (reference subroutine
EULER) at joirc i, size 3x3, and
{hc} = [Ul Vl wl U2 V2 WZ]. U, V, W are translations.
Substituting Eq. [2] into [1] gives the kinetic energy using global
coordinates as
¥
T ,.,T ] T T
Tm11 [Ell 1" Iyl [Ej) v owm, [E;) Iv) [v) [E,]
T=5{h.,} |cocacmrmr e c e _ec——— e e cmc e .. —-——— -} {h.}
¢ T . .T : T . .T G
myy [E1 Lv1T o [yv] [Ell:mzz (E,1° [v]” [v] [E,]

(3]
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The kinetic energy using local coordinates is

[ ] [ - T
T --% [same as column]r m, {1} ' m g, [1]) 6:1
srssewaosdocomasw - .
o 01§ gy 1] | o0
621 (1]
Sx2
ayz
- 622.
vhere [I] is a unity matrix, size 3x3.
The deflections in the local system are related to the deflections
in the global coordinate directions by
i 1
6:1 S
) (v (g1 & o
»r 1" T mmses {h.} (2]
8 '
zl |= (4] ] [Y] lzzl
Sx2
6y2
| 22 |
where

[vy] is a direction cosine matrix, size 3x3,

[E,] is an Euler angle transformation matrix (reference subroutine

EULER) at joint i, size 3x3, and
{h.} = (U v

i

1 wl U2 V2 Wz]. U, V, W are translations.

Substituting Eq. [2] into [l] gives the kinetic energy using global
coordinates as

T T
]

mp (510 141 [v) (Ey)

R T TP ALY

my, [E,17 v1T Iv] [E,]

o, (BT 0T ] (R
1,7
E{hG} AR D GO WL S LS GED A W WD R T W W G A W
T T
g,]" 1T vl (e

Ts=

m

21 1]

(3]



MAS1A ~ 3/3

]
T “
L - ot TR LI LY :
= -2- {hc} ------ ;-——‘4' .......... (hc} [6]

because (Y]} [y]r = [1I] and (Ei] [Ei]'r = [I] since [v] and [E
are orthonormal.

R

For lumped mass, -12-21-0. The kernel matrix i{n Eq [4] is the

desired mass matrix in the global coordinate directions. If the
Euler angles are zero at both joints, [Ei] = [1]. ’
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Subroutine MAS1B calculates a finite element mass matrix for a
combined axial~torsion-bending bar element with unrestrained
boundaries.

The mass matrix, size 12x12, is in the global coordinate direc-
tions. The global coordinate order for each element is (U, V,
W, P, Q, R) joint 1, then joint 2 wvhere U, V, W are translations
and P, Q, R are rotations. If the Euler angles are zero at a
joint, then Us§ , V=5 ,  W=8 , P=d , Q=8 , R=0 ,

X Y 4 X Y 4

This mass matrix is computed by first calculating a mass matrix
in the local coordinate system for either a lumped mass matrix
or a consistent mass matrix. A direction cosine matrix is then
used to transform the mass matrix from the local coordinate sys-
tem to the global coordinate directions.

DESCRIPTION OF TECHNIQUE

The calculation of the mass matrix in the global coordinate direc-
tions is accomplished as follows. First a mass matrix is calculated
in the local coordinate system for either lumped mass or consistent
mass using uncoupled axial, torsion, and bending subroutines

listed.

lumped consistent
axial MlAl M1A2
bending M1B1 M1B2
torsion MICl M1C2

A sketch of the bar is given for reference as

y )

\, :

1 (local z is out from paper)

The kinetic energy using local coovdinates is

1.0 .1 :
T= 7 {hL} [mL] {hL}

(1}
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where

T | | |
Iy} = 08, Sa 1 % ®x2 | %y1 Sy2 %a1 %22 | 821 S22 851 2]

and
- -
1 *12
%21 %22
11 %12
ta t22
b1 B2 By by
Bay  Bap Py3 By
w1 = by "By b33 By,
041 "Pa2 ba3 Py
biy b1z Py3 Py
a1 P22 Py3 By
P31 Paz P33 Py
i a1 Paz Pa3 Pud

aij’ tij’ bij refer to terms in the uncoupled axial, torsion, bending
mass matrices. For lumped mass, the off-diagonal terms are zero.

The above deflections in the local coordinate directions are related
to deflections in the global coordinate directions by

{hL} = [vy] {hg} (2]

vwhere (v] i{s a direction cosine matrix (reference subroutine DCOS1B)
including Euler angles, size 12x12, and {h.}T = [U.V.W.P.Q.R

G 1'17"1°1°171
UZVZWZPZQZRZJ. U, V, W are translations and P, Q, R are rotations.
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Substituting Eq [2] into [1] gives the kinetic energy using
global coordinates as

1, 47 N
T = 3 (ag)" () (ng) (3]

vhere (] = (1T (m ] {v] is the desired mass matrix in the
global coordinate uJdirections.

Even though the local lumped mass matrix has only diagonal terms,

the triple matrix product using direction cosines is needed because
th ¢ b,, and t,, ¢ by
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Subroutine MAS2 calculates a finite elemunt mass matrix for a
combined membrane-bending triangle plate element with unrestrained
boundaries.

The mass matrix, size 18x18, is in the global coordinate directions.
The global coordinate order for each element is (U, V, W, P, Q, R)
joint 1, then joints 2, 3 where U, V, W are translations and P,
Q, R are rotations. If the Euler angles are zero at a joint, then
UsS , V=5 , W= , P=8 , Q=6 , R=6 . :

X Y X X Y z

This mass matrix is computed by firet calculating a mass matrix
in the local coordinate system for either a lumped mass matrix
or 4 consistent mass matrix. A direction cosine matrix is then
used to transform the mass matrix from the local coordinate sys-
tem to the global coordinate directions.

DESCRIPTION OF TECHNIQUE

The calculation of the mass matrix in the global coordinate directions
is accomplished as follows. First a mass matrix is calculated in

the local coordinate system for either lumped mass or consi:‘:ent

mass using uncoupled membrane and bending subroutines listed.

lumped consistent
membrane | M2Al M2A2
banding M2B1 M2B2

A ske:ch of the triangle plate is given for r.ierence as

(plate 1is in local xy plane)
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The kinetic energy using local cocrdinates is

1,0 4,7T y
T-i{hL} [mL] {nL}

where
) T=[6.6.6, 6.6.8. 6.6.08.1
L x1 "yl "zl x2 y2 "z2 x3 y3 "23:
521 %1 Sy1 %22 %2 852 %23 8x3 Oy5)
and
[}
(m ] ¢ 0
[m, ] = me
"L mevemcaslieccnnas
0 ! (m ]

: ben

The above deflections in the local coordinate directions are
related to deflections in the global coordinate directions by

{hL} = [v] {hG}

where [y] is a direction cosine matrix (reference subroutine
DCNS2) including Euler angles, size 18x18, and {hG}T -

[U1 V1 w1 P1 Q1 R1 U2 V2 w2 P2 Q2 R2]' U, V, W are translations
and P, Q, R are rotations.

Substituting Eq [2) into [1] gives the kinetic energy using
global coordinates as

10T .
T= 5-{hG} [mG] {hs}

where [mG] = [y]T [mL] [vy] is the desired mass matrix in the

rlobal coordinate directions.

Because ‘he lo:al lumped mass matrix is diagonal and because
translation terms are equal for membrane and bending, and rotation
terms are equal for membrane cnd bending, the triple matrix product
using direction coeines is not needed. A simple reordering of
diagonal terms is sufficient,

{1}

[2]

(3]
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Subroutine MAS2? calculates a finite elemen: mass matriy for a
combined membrane-bending quadrilateral plate element with un-
restrained boundu-ies.

The mass matrix, size 24x24, is in the global coordinate directions.
The global coordinate order for each element is (U, V, W, P, Q, k)
joint 1, then joints 2, 3, 4 where U, V, W, are trauslations and
P, Q, R are rotations. If the Euler angles are zeiro at a joint,
then U=4 , V=8 | W=4 , P=f , Q=6 , R=8 ,

X Y Z X Y Z

This mass matrix is calculated by taking the average overlap of
four triangles show.. in the sketch. Either a lumped mass matrix
or a consistent mass matrix is calculated. Subroutin: MAS2 is
used for the calculation of the mass matrix for the triangular
plates.
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Subroutine QUAD calculates (on option) finite element: (1) mass
matrices; (2) stiffness matrices (same as global load transformation
matrices), and (3) vectc:s to locate the DOF (degrees of freedom)

of the matrices in the global DOF, for combined membrane-bending
quadrilateral plate elements. The above matrices and vectors are
written on disk units and constitute the output fiom this sub-
routine. All matrices are in dense programming logic.

Each mass and stiffness matrix, size 24x24, is in the glotal
coordinate directions. The global coordinate order for each ele-
ment is (U, v, W, P, Q, R) joint 1, then joints 2, 3, and &

vwhere U, V, W are translations and P, Q, R are rotations. If

th: Euler angles are zero at a joint, then U-Gx, V=6Y, Hséz, P-ex,

3 , R=6 .
Q'Y’ z

Each global load t:: . vmation patrix, size 24x24, relates loads
at quadrilateral ve:. .ces in the global coordinate directions to
deflections in the glcbal coordinate directions. The row order

in this macrix is (P, ., Pv, P“, F}, Ho, Hh) joint i, then joints 2, 3

and 4 vheie P is force cnd M is moment.

Each location vector (IVEC) locates the DOF of each finite element
in the global DOF. For example, IVEC(6)=834 places element DOF 6
into global DOF 834. IVEC(3)=0 o.its element DOF 3 from global
VOF. This constrains element DOF 3 to zero motion.

The above matrices are calculated by using joint data and elewent
data. The joint data is obtained from three matrices input to
this subroutine: (1) joint global X, Y, Z locations; (2) joint
global DOF numbers; and (3) joint Euler angles.

The elemen* data, read in this subr. 'tine, is: (1) options for
mass, stiffness; (2) elemen material properties; and (3) element
joint numbers.

Each mass matsix is calculated by transfer to subroutine MAS3.
Each stiffness matrix is calculated by transfer to subroutine STF3.
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Subroutine STFlA calculates a finite element; (1) stiffness
matrix (same as global load transformation matrix); (2) local
load transformation matrix; and (3) om option, stress transforma-
tion matrix for an axial rod element with unrestrained boundaries.

The stiffness matrix, size 6x6, is in the global coordinate
dir.ctions. The global coordinate order for each element is
(u,V,¥W) joint 1, then joint 2 where U,V,W are translations. If
the Euler angles are zero at a joint, then U-Gx, v=6Y, Hadz.

The global load transformation matrix, size 6x6, relates loads

at the rod ends in the global coordinate directions to deflections
in the global coordinate directions. The row order in this
matrix is (Pu, Pv, PHQ joint 1, then joint 2 where P is force.

The local load trancsformation matrix, size 2x6, relates loads

at the rod ends in the local coordinate system to deflections in
the global coordinate directions. The row order in this matrix
is le, sz where Px is axial force.

The stress transformation matrix, size 2x6, relates stresses at
the rod ends in the local coordinate system to deflections in the
global coordinate directions. The row order in this matrix is
le’ on where o is normal stress.

These matrices are computed by first calculating a stiffness
matrix and stress transformation matrix in the local coordinate
system. A direction cosine matrix is then used to transfomm

the stiffness matrix and, on option, the stress transformation
matrix from the local coordinate system to the global coordinate
directions.

DESCRIPTION OF TECHNIQUE

The calc.ilation of the stiffness matrix, load transformation matrix,
and stress transformation in the global coordinate directic s is
accomplished as follows. First a stiffness matrix is calculated

in the local coordinate system and can be given as [kL] = kll kl2

(reference subroutine K1Al). K K
21 22

A sketch of the rod is given for reference as

y 6y2 X

\ 2 6)!2

6y1

Y
! A
)-.....x Rk 1 6x1 z2

z 2# z1



STF1A - 2/3
The strain energy using local coordinates is

- . - -
]
kll : k12 dxl
N
0 ' 0 6y1
1 . T ' .
U -z-[sames column] ------9:.----?. Gzl
|
k21 ' k22 6x2
]
0 : 0 6y2
'
0: 0 622
. o 2 6]
=3 [same as column] K K 5 (1]
| 21 22 x2

The deflections in the local system are related to the deflections
in the global coordinate directiomns by
oxl
= = |
; th} = [v] ] [2]
x2

where [Y] is a direction cosine matrix (reference subroutine
DCOS1A) including Euler angles, size 2x6, and

T
1% = vV.]. .
{hG‘ [U1 Vl Wl U2 V2 h2] U, V, W are translations. Substituting

Eq {2) into [1]} gives

1 T
u=3 {hc} {kG] {hG} (3]

where [kG] = [y]’r [kL] [v] is the st.ffness matrix in global

coordinate directions.

The loads in the global coordinate directious can be calculated from
Eq [3] as

W ~
{PG} = 3~TE;T = [kG] {hG} 14]
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Thus [kc] is also a global load transformation matrix giving loads

in the global coordinate directions to deflections in the global
coordinate directions.

The loads In the local coordinate directions can be calculated
from Eq {1] as

tp,} = gHTE;T = i) (h) (5]
Substituting Eq [2] gives

tp } = [TL] {hg} (6

vhere [TL] = [kL] [v] is the local load transformation matrix
giving the loads in local coordinate directions to deflections in
the global coordinate directionms.

A stress transformation matrix relating stresses in the local
coordinate directi ns to deflections in the local coordinate
directions is first calculated (reference subroutine K1Al), that
is,

{sL} = [rsL] {hL} . [7]

On option, the stress transformation matrix relating stresses in
the local coordinate directions to deflections in the global
coordinate directions is calculated. Substituting Eq [2] into
[7) gives

{SL} = [T8] {hc}

where

(151 = (151 1¥] -
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Subroutine STF1B calculates a finite element: (1) stiffness

matrix (same as global load transformation matrix); (2) local

load transformation matrix; and (3) on option, stress transformation
matrix for a combined axial-torsion-bending bar element with un-
restrained boundaries.

The stiffness matrix, size 12x12, is in the global coordinate
directions. The global coordinate order for each element is (U, V,
W, P, Q, R) joint 1; then joint 2 where U, V, W are translations
and P, Q, R are rotations. If the Euler zngles are zero at a
joint, then U=6 , V=8 , W=8 , P=6 , Q=0 _, R=3 .

X Y yA X Y rA

The global load transformation matrix, size 12x12, relates loads
at the bar ends in the global coordinate directions to deflections
in the global coordinate directions. The row order in this matrix
3 3 - £

is (Pu, PV, P“, MP’ HQ, MR) joint 1; then joint 2 where P is force

and M is moment.

The local load transformation matrix, size 12x12, relates loads

at the bar ends in the local coordinate system to deflections in

the global coordinate directions. The row order in this matrix

is le, sz, Mxl’ sz, Pyl’ Pyz’ le. sz, le, le, Hyl’ HyZ’ where
P is force and M is moment.

The stress transformation matrix, size 12x12, relates stresses

at the bar ends in the local coordi ate system to deflections in
the global coordinate directions. The row order in this matrix is

* *
x1 2 Hatth Mo*rn
AT A 9 Iy

* *
v1i  Bya My tey My tepn
A 2 I 1,2

*

Pa P My teny My tey,
Al AZ Iyl Iy2

P is force,

M 1is moment,

A is cross-sectional area

r is distance from torsion axis to outer fiber

A i: Liecs-section Saint Venant's torsion constant JG

¢ 1is distance from bending neutral plane to outer fiber ar-

1 4is area moment of inertia about lccal axis.
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These matrices are computed by first calculating a stiffness

matrix and stress transformation matrix in tne local coordinate
system. A direction cosine matrix is then used to transform the
stiffness matrix and, on option, the stress transformation matrix
from the local coordinate system to the global coordinate directioms.

DESCRIPTION OF TECHNIQUE

The calculation of the stiffness matrix, load transformation matrix,
and stress transformation in the global coordinate directions is
accomplished as follows. First a stiffness matrix is calculated in
the local coordinate system using uncoupled axial, torsion, and
bending subroutines listed.

Subroutine
axial K1A1
bending K1B1
torsion Ki1C1

A sketch of the bar is given for reference as

(V]
Y z1 (local z is out from paper)
LZ:—-'-X

Strain energy using local coordinates is

<1 1 (h.}
U= 2 thL) [kL] ,hL, [1]
where
{h }T = o 6. 08 .8 045 86 _ 6 8. A8 5 e 8 ]

L xl x2 . "x1 "x2: 'yl "y2 "zl "22 : zl1 "z22 'yl y2
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and
(2, 1 E
321 %22
1 %12
£21 t22
B11 P12 P13 Pug
b1 P2z Pay Py
o by Pz P33 Py
i a2 Pu3 Pag
b P12 P13 Py
by1 byp b3 By
By P32 b33 Py
] o1 Paz Pa3 Pus
aij’ tij’ bij refer to terms in uncoupied axial, torison, bending
stiffness matrices.
Deflections in the local system are related to deflections in the
global coordinate directions by
(h 1 = [v} {hg) (21

where [y) is a di ection cosine matrix (reference subroutine DCOS1B)
including Euler angles, size 12x12, and

T
= \
fhel' = [0 V)W B QR Ty V) W By Q
tions and P, Q, R are rotations.

R2]' U, V, W are transla-

substituting Eq (2] into [1] gives

LSH

- ’1.
U =73 {h;}" [k] {h.} {31

where [k.] = (+17 [k, ] [v] is the stiffness matrix in global

coordinate directions.
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Loads in global coordinate directions can be calculated from
Bq [3] as

U .
{PG} = '5T§;T~ [kcl {hG} [4]

Thus, [kG] is also a global load transformation matrix giving

loads in the global coordinate directions to deflections in the
global coordinate directions.

Loads in local coordinate directions can be calculated from Eq [1]
as

olJ
{PL} = 3_TF;T (kL] {hL} (5]
Substituting Eq [2] gives
{pL} = [TL] {hG} (6]

Where [TL] = [kL} [v] is the local load transformation matrix giving

the loads in local coordinate directions to deflections in the
gluvbal coordinate directions.

A stress transformation matrix relating stresses in local coordinate

directions to deflections in local coordinate directions is first
calculated (reference subroutines K1Al, X1Bl, K1C), that is,

{sL} = [TSL] {hL} . (71

On option, the stress transformation matrix relating stresses in
local coordinate directions to deflections in global coordinate
directions is calculated. Substituting Eq [2] into [7] zives

{sL} = {rs]{hG}
where

(1) = (18] [¥v).
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Subroutine STF2 calculates a finite element: (1) stiffness

matrix (same as global load transformation matrix); (2) local lcad
transformation matrix; and (3) on option, stress transformation
matrix for a combined membrane-bending triangle plate element

with unrestrained boundaries.

The stiffness matrix, size 18x18, is in the global coordinate
directions. The global coordinate order for each element is (U,
V, W, P O, R) joint 1; then joints 2 and 3 where U, V, W are
translations and P, Q, R are rotations. If the Euler angles are
zero at a joint, then U=8 , V=§ | W=4§ , P=6 , Q=6 , R=6 .

X Y A X Y Z

The global load transformation matrix, size 18x18, relates loads
at the triangle vertices in global coordinate directions to de-
flections in global coordinate directions. The row order in this
matrix is (PU, Pv, Pw, MP, MQ’ MR) joint 1; then jouints 2 and 3

where P is force and M is moment.

The local load transformation matrix, size 18x18, relates loads

at the triangle vertices in the local coordinate system to deflec-
tions in global coordinate directions. The row order in this
matrix is (Px, Py, Mz) joint 1; then joints 2 and 3, next (Pz, Mx,

My) joint 1; then joints 2 and 3 where P is force and M is moment.

The stress transformation matrix, size 18x18, relates stresses at
the triangle vertices in the lecal coordinate system to deflections
in global coordinate directions. The row order in this matrix is

(ax, S Txy) at Z = + 1/2:ben for joint 1; then joints 2 and 3.

Then the same data at 2 = -~ 1/2tben. o is normal stress and t is
shear stress.

These matrices are computed by first calculating a stiffness matrix
and stress transformation matrix in the local coordinate system.

A direction cosine matrix is then used to transform the stiffness
matrix and, on opt.on, the stress transformation matrix from the
local coordinate system to the global coordinate directions.

DESCRIPTION OF TECHNIQUE

The calculation of the stiffness matrix, load transformation
matrix, and stress transformation in global coordinate directiune
is accemplished as follows. First a stifiness matrix is calculated
in the local coordinate svstem using the uncoupled membrane and
bending subroutines listed.

Subroutine

membrane K2Al

bending K2B1
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A sketch of the triangle plat. is given for reference as

(plate is in local xy plane)

The strain energy :3ing local coordinates is
U=3n) (k] {h} (1]
IR R ) t

where

T

{ = [3
1= 80 801 %21 Sx2 %92 %2 %43 fy3 83

°zl axl eyl 5zZ 6x2 eyZ 623 exa ey ]

and

=
]
'
]

i
'
'
'
'—
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Deflections in the local system are related to the deflections
in global coordinate directions by

5xl

s | = =1 (ng) [2]
x2

vhere [y] is a direction cosine matrix (re.. ence subroutine DCO0S2)
including Euler angles, size 18x18, and

T
(hg}" = [U) V; W) By Q) Ry U, V) W) Py Q Byl
U, V, W are translations; P, Q, R are rotations.

Substituting Eq [2] into [1] gives

1 T
U=3{h )} [k.] {h;} [3]

where [kG] = [Y]T [kL] {v] is the stiffness matrix in global
coordinate dire~tinns.

Loads in the global coordinate directions can be calculated from
Eq [3] as

() = %14—{31? = k) b} (4]

Thus, [kG] is a.30 a global load transformacion watrix giving loads

in global coordinate directions to deflections in global coordinate
directions.

Loads in the local coordinate directions can be calculated from
Eq [1] as

ol
{PL} 3~TE;T = [kL] {hL} (5]
Substituting Eq (2] gives
{p,} = [TL] {n;] (6]
where [TL] = [kL] [v] is the local load transformation matrix giving

the loads in local coordinate directicns to deflections in global
coordinate directions.
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A stress transformation matrix relating stresses in the lccal
coordinate directions to deflections in the local coo .inate

directions is first calculated (reference subroutines K2Al, K2Bl),
that is,

(s} = (18] h;} . (71

On option, the stress transformation matrix relating stresses in
local coordinate directions to deflections in global coordinate
directions ir calculated. Substituting Eq [ 2] into [7] gives

(s } = [TS1{Kg)

where

[1s] = [15,] [¥].



Subroutine STF3 calculates a finite element stiffness matrix
(same as global load transformation matrix) for a combined .
membrane-bending quadrilateral plate element with unrestrained
boundaries.

The stiffness matrix, size ?4x24, is in global coordinate direc-
tions. The global coordinate order for each element is (U, V, W,
P, Q, R) joint 1; then joints 2, 3 and 4 where U, V, W are transla-
tions and P, Q, R are rotations. If the Euler angles are zero at
a joint, then U=8 , V=1 | W=§ , P=0 , Q=06 , R=0 ,

X Y A X Y A

-

Each global load transformation matrix, size 24x24, relates loads
at the quadrilateral vertices in global coordinate directions to
deflections in global coordinate directions. The row order ir
this matrix is (PU, PV, Pw, MP’ MQ’ MR) joint 1; then joints 2,

3 and 4 where P is force and M is moment.
This stiffness matrix is calculated by teking the average overlap

of four triangles, snown in the sketch. Subroutine STF2 is used
for calculation of the stiffness matrix for the triangular pJlates.

3

STZ?3
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Subroutine TRNGL calculates (on option) finite element: (1} mas
matrices, (2) stiffness matrices same as global load transformation
matrices);: (3) local load transformation matrices; (4) st:ess trans-
formation matrices; and (5) vectors to locate the DOF (degrees of
freedom) of these matrices in the globzl DOF, for combined membrane-
bending triangle plate elements. Thec<2 matrices and vectors are
written on disk units and constitute t.e output from this srh-
routine. Ali matricas are in dense programming logic.

Each mass and stiffness matrix, size 18x18, is in glcbali cocrdiinare
directions. ‘the global coordinate order for each elcmert is (U,
vV, W, P, Q, R) joint 1; then joints 2 and 3 where U, V, * 2sre
transiations and P, Q, R are rotations. If the Euler 2. ‘es are
zero at a joint, then U=¢ , V=8 , W=ed , P=0 , Q=0 , R=6 .

X Y A X Y z

Each global load transformation matrix, size 18x18, relates louads
at the triangle vertices in global coordir ate direccions to
deflections in global coordinate directions. The row order in
this ma:rix is (PU, Pv, Pw, MP’ MQ’ MR) joiut 1; then joints 2

and 3 where P is force and M is moment.

Each local lo:' transformation matrix, size 18x1&, relates loacs
at the triangle vertices in the local coordinate system to deflec-
tions In global coordinate directions. The row order in this
matrix is (Px' Py, Mz) joint 1; tlen joints 2 aad 3 ne» (Pz, Mx’

My) joirt 1; then joints 2 and 3 where P is force and M is moment.

Each stress transformation matrix, size 18x18, relates stresses

at the triangle verticus in the local coordinate syctem to deflec-

tions n glohal coordinate directions. The row order in this

matrix is (o0 , ¢« , 1 ) at Z =+ 1/2¢t for joint 1; then joints
Xy Xy ben

2 and 3; then the same data at Z = —1/2tben. o 18 normal stress

and 1 is shear stress.

Each location rector (IViZ) locates the DOF of each finite ele-
ment in the glcbal DOF. Foxr example, TVIC(6)=834 places element
DOF 6 into global DOF 834. 1IVEC(3)=0 . «s element DOF 3 from
global DOF. This constrains element DOF 2 to zero motion.

The <bove matrices are calcuiated by using ioint data and elemen-
data., The joint data, obtained from three matrices input tc .ais
subroutine, 4re (1) 3oint global X, Y, Z l.cations, (2) joint
globai DOF numbers, and (3) joint Euler angles.

The element data read in this su routire is (1) options for mas«,
stiffness, local load transformacions, stress transformation-;
(2) element mar~rial properties; and (3) element joint numbers.



TRNGL - 2/2

Bach mass matrix is ,cali:uhtd by transfer to subroutine MAS2.
Eaclt ._iffness matyix, loads and stress transformation metrix is
calcv_dted by transfer to subroutins STF2.



